A prominent research firm, Cognizance Market Research added a cutting-edge industry report on the “Global AI in Supply Chain Optimization Market”. The report studies the current and past growth trends and opportunities for the market to gain valuable insights during the forecast period from 2023 to 2032.
Global AI in Supply Chain Optimization Market Analysis:
According to cognizance market research, the Global AI in Supply Chain Optimization Market was valued at US$ 9.15 Billion in 2023 and is anticipated to reach US$ 66.61 Billion by the end of 2032 with a CAGR of 28.2% from 2023 to 2032.
What is the Global AI in the Supply Chain Optimization Market?
Global AI in Supply Chain Optimization Market encompasses the use of artificial intelligence technologies in supply chain management. AI’s applications allow the automation of processes, forecast scenarios, and furthering relevant decision-making that aids in business optimization and cutting of costs as well as responding to disruptive incidents. This market aims to benefit industries such as retail, manufacturing, health care, and logistic industries that depend on supply chain management.
Machine learning, NLG, and robotics are some of the AH technologies that are applied comprehensively in supply chain functions including inventory, demand forecast logistics, and risk management. These solutions help uncover the hidden patterns and trends that can help companies respond to the dynamically changing environment and better satisfy clients’ demands.
Ongoing complications in supply chains and disruptions as business continues to expand globally have led to the increased use of artificial intelligence to improve processes. Increasing investments in cloud computing technology along with the increasing supply of AI tools predict the burgeoning growth of this market due to the heightened demand for more intelligent and more flexible supply chain management.
Global AI in Supply Chain Optimisation Market Outlook:
Global AI in the Supply Chain Optimization Market will have a considerable growth rate since every company will require more efficiency and supply chain robustness in the future. Companies are using AI tools to overcome some of these issues such as unstable sales, supply chain issues, and organizational inadequacies. It is contributed by trends such as the application of tools like machine learning, robotics, and natural language processing the industries like retail, manufacturing, and health.
North America is responsible for the largest market share because of the developed technology sector and well-known market players like IBM, Microsoft, and Oracle. Europe comes next in line and the English-speaking world of the Americas zones follows with a force of digitalization and strict rules regarding SC transparency. At the same time, the Asia-Pacific region is becoming increasingly important due to industrialization, the development of e-commerce businesses, and state support for artificial intelligence.
Cloud-based solutions have started to emerge as strategic as key supply chain management applications can be integrated with such systems. All these solutions also lower the implementation cost further making them the most suitable for SME’s. Software upgrades in the on-premise environment are still in high demand in industries that require maximum protection of information, for example, the Sphere, health services, and defense.
Currently, strategies adopted by key players in the global mHealth market are concentrating on research & development and mergers. For instance, engagements between AI providers and logistic firms are boosting innovation for micro-niches within the supply chain market. These strategies are increasing competitiveness in the market, and at the same time, stimulating the production of further improved and differentiated instruments.
Since supply chains across the globe are getting more and more sophisticated, the need for AI-based optimization tools will only increase. Market expansion is expected to be a result of increased awareness of the uses of these AI technologies as well as the sale of AI and the adaptation of these new technologies in supply chain management with a focus on sustainability and risk management in future supply chain management techniques.
Segment Analysis:
The AI in the Supply Chain Optimization Market has been categorized based on component, deployment model, technology type, application area, end-user industry, and geographical area. From a components perspective, demand forecasting and logistics management-related solutions meet these criteria due to their effectiveness in enhancing operation productivity and decision-making. Concerning the deployment model, cloud-based models are quite popular at present because they are flexible as well as affordable; on the other hand, on-premises are useful in industries that have high levels of data security needed.
Based on the applications, the logistics and transportation management sector continues to take a large proportion, as the demand for real-time tracking and analysis increases. End consumer-oriented sectors including retail and electronic commerce, manufacturing, and healthcare are leading the market since they cannot afford sluggish supply chains. On a geographical basis, North America is the largest market and is followed by Europe and Asia-Pacific as the industrial transformation and digitalization accelerate AI adoption.
Geographical Analysis:
North America holds the largest market share in AI in supply chain optimization due to mechanical development in technology, high investment in AI research and development, and key players such as IBM, Oracle, and Microsoft. The emphasis of the region on the implementation of AI in almost all sectors such as retail trade, healthcare, and manufacturing acts as a stimulus of the market. In addition, enhanced demand for the SCM processes during the growing e-commerce activities also enhances the adoption of automation.
Europe shares the second position with a large percentage increase attributable to the increased regulation of supply chain visibility requirements and the shifting focus on digital adjustment. Some of the pioneers are Germany, France, and the UK – all of which are using Artificial Intelligence to increase operational effectiveness and company longevity. Three industries use AI in this region: automotive, pharmaceutical, and manufacturing industries, which use AI in predictive analysis and logistics respectively.
Currently, Asia-Pacific is increasingly becoming the leading growth region due to increased industrialization, increasing e-commerce activity, and governments’ support for AI implementation. Some of the largest economies in the world, notably China, India, and Japan are increasingly using AI in supply chains to manage several difficult problems. The trend in Latin America and the Middle East & Africa is positive although moderate, partly due to a growing understanding of AI advantages and ongoing advances in building digital ecosystems in such fields as trade and drilling & extraction.
The report offers the revenue of the Global AI in Supply Chain Optimization Market for the period 2020-2032, considering 2020 to 2022 as a historical year, 2023 as the base year, and 2024 to 2032 as the forecast year. The report also provides the compound annual growth rate (CAGR) for the Global AI in Supply Chain Optimization Market for the forecast period. The Global AI in Supply Chain Optimization Market report provides insights and in-depth analysis into developments impacting enterprises and businesses on a regional and global level. The report covers the Global AI in Supply Chain Optimization Market performance in terms of revenue contribution from several segments and comprises a detailed analysis of key drivers, trends, restraints, and opportunities prompting revenue growth of the Global AI in Supply Chain Optimization Market.
The report has been prepared after wide-ranging secondary and primary research. Secondary research included internet sources, numerical data from government organizations, trade associations, and websites. Analysts have also employed an amalgamation of bottom-up and top-down approaches to study numerous phenomena in the Global AI Supply Chain Optimization Market. Secondary research involved a detailed analysis of significant players’ product portfolios. Literature reviews, press releases, annual reports, white papers, and relevant documents have been also studied to understand the Global AI in the Supply Chain Optimization Market. Primary research involved a great extent of research efforts, wherein experts carried out interviews telephonic as well as questioner-based with industry experts and opinion-makers.
The report includes an executive summary, along with a growth pattern of different segments included in the scope of the study. The Y-o-Y analysis with elaborate market insights has been provided in the report to comprehend the Y-o-Y trends in the Global AI in Supply Chain Optimization Market. Additionally, the report focuses on altering competitive dynamics in the global market. These indices serve as valued tools for present market players as well as for companies interested in participating in the Global AI in Supply Chain Optimization Market. The subsequent section of the Global AI in Supply Chain Optimization Market report highlights the USPs, which include key industry events (product launch, research partnership, acquisition, etc.), technology advancements, pipeline analysis, prevalence data, and regulatory scenarios.
Global AI in Supply Chain Optimization Market Competitive Landscape:
There are several small and major firms participating in the highly fragmented Global AI in Supply Chain Optimization Market. The new strategies formed by companies revolve around accuracy and precision. The following are some of the major market participants:
The report explores the competitive scenario of Global AI in the Supply Chain Optimization Market. Major players working in the Global AI in Supply Chain Optimization Market have been named and profiled for unique commercial attributes. Company overview (company description, product portfolio, geographic presence, employee strength, Key management, etc.), financials, SWOT analysis, recent developments, and key strategies are some of the features of companies profiled in the Global AI in Supply Chain Optimization Market report.
Segmentation:
Global AI in Supply Chain Optimization Market, By Component:
Global AI in Supply Chain Optimization Market, By Technology:
Global AI in Supply Chain Optimization Market, By Deployment Model:
Global AI in Supply Chain Optimization Market, By Application:
Global AI in Supply Chain Optimization Market, By End-User Industry:
Global AI in Supply Chain Optimization Market, by Region:
Research Methodology: Aspects
Market research is a crucial tool for organizations aiming to navigate the dynamic landscape of customer preferences, business trends, and competitive landscapes. At Cognizance Market Research, acknowledging the importance of robust research methodologies is vital to delivering actionable insights to our clientele. The significance of such methodologies lies in their capability to offer clarity in complexity, guiding strategic management with realistic evidence rather than speculation. Our clientele seek insights that excel superficial observations, reaching deep into the details of consumer behaviours, market dynamics, and evolving opportunities. These insights serve as the basis upon which businesses craft tailored approaches, optimize product offerings, and gain a competitive edge in an ever-growing marketplace.
The frequency of information updates is a cornerstone of our commitment to providing timely, relevant, and accurate insights. Cognizance Market Research adheres to a rigorous schedule of data collection, analysis, and distribution to ensure that our reports reflect the most current market realities. This proactive approach enables our clients to stay ahead of the curve, capitalize on emerging trends, and mitigate risks associated with outdated information.
Our research process is characterized by meticulous attention to detail and methodological rigor. It begins with a comprehensive understanding of client objectives, industry dynamics, and research scope. Leveraging a combination of primary and secondary research methodologies, we gather data from diverse sources including surveys, interviews, industry reports, and proprietary databases. Rigorous data analysis techniques are then employed to derive meaningful insights, identify patterns, and uncover actionable recommendations. Throughout the process, we remain vigilant in upholding the highest standards of data integrity, ensuring that our findings are robust, reliable, and actionable.
Key phases involved in in our research process are mentioned below:
Understanding Clients’ Objectives:
Extensive Discussions and Consultations:
Industry and Market Segment Analysis:
Target Audience Understanding:
Identifying Challenges and Opportunities:
Grasping Specific Goals:
Data Collection:
Primary Research Process:
Secondary Research Process:
Data Analysis:
The data analysis phase serves as a critical juncture where raw data is transformed into actionable insights that inform strategic decision-making. Through the utilization of analytical methods such as statistical analysis and qualitative techniques like thematic coding, we uncover patterns, correlations, and trends within the data. By ensuring the integrity and validity of our findings, we strive to provide clients with accurate and reliable insights that accurately reflect the realities of the market landscape.
Transformation of Raw Data:
Utilization of Analytical Methods:
Statistical Analysis:
Qualitative Analysis Techniques:
Integrity and Validity Maintenance:
Data Validation:
The final phase of our research methodology is data validation, which is essential for ensuring the reliability and credibility of our findings. Validation involves scrutinizing the collected data to identify any inconsistencies, errors, or biases that may have crept in during the research process. We employ various validation techniques, including cross-referencing data from multiple sources, conducting validity checks on survey instruments, and seeking feedback from independent experts or peer reviewers. Additionally, we leverage internal quality assurance protocols to verify the accuracy and integrity of our analysis. By subjecting our findings to rigorous validation procedures, we instill confidence in our clients that the insights they receive are robust, reliable, and trustworthy.
Importance of Data Validation:
Scrutiny of Collected Data:
Validation Techniques:
Internal Quality Assurance Protocols:
Report Scope:
Attribute
Description
Market Size
US$ 66.61 Billion (2032)
Compound Annual Growth Rate (CAGR)
28.2%
Base Year
2023
Forecast Period
2024-2032
Forecast Units
Value (US$ Billion)
Report Coverage
Revenue Forecast, Competitive Landscape, Growth Factors, and Trends
Geographies Covered
North America, Europe, Asia Pacific, Latin America, Middle East & Africa
Countries Covered
U.S., Canada, Germany, U.K., France, Spain, Italy, Rest of Europe, Japan, China, India, Australia & New Zealand, South Korea, Rest of Asia Pacific, Brazil, Mexico, Rest of Latin America, GCC, South Africa, Rest of Middle East & Africa
Key Companies Profiled
IBM Corporation, Microsoft Corporation, Oracle Corporation, SAP SE, Amazon Web Service, Google LLC, Blue Yonder Group Inc., Kinaxis Inc., Siemens AG, and Manhattan Associates.
It was Valued at US$ 9.15 Billion in 2023.
It is projected to reach more than US$ 66.61 Billion by 2032.
It is anticipated to be 28.2% from 2024 to 2032.
Trend: Increasing deployment of cloud-based AI to support supply chain functionality by providing affordability and capacity.
Driver: Growing need to enhance the real-time visibility of supply chain management and its effectiveness.
Opportunities: Opportunities are on account of business expansion in the emergent markets occasioned by the industrialization of the economies and accelerated e-commerce.
Challenges: Huge costs associated with implementation and technical issues arising from the implementation of AI with a business’s existing infrastructure.
IBM Corporation, Microsoft Corporation, Oracle Corporation, SAP SE, Amazon Web Service, Google LLC, Blue Yonder Group Inc., Kinaxis Inc., Siemens AG, and Manhattan Associates.
US$ 4600.00
US$ 6500.00
US$ 8500.00
We can customize every report – free of charge – including purchasing stand-alone sections or country-level reports
We help clients to procure the report or sections of the report at their budgeted price. Kindly click on the below to avail
Cognizance market research is continuously guiding customers around the globe towards strategies for transformational growth. Today, businesses have to innovate more than ever before, not just to survive, but to succeed in the future
© 2023 All rights Reserved. Cognizance Market Research